Jackson, G. E., May, P. M. \& Williams, D. R. (1981). J. Inorg. Nucl. Chem. 43, 825-829.
Kirschner, S., Wei, Y.-K., Francis, D. \& Bergman, J. G. (1966). J. Med. Chem. 9, 369-372.
Rosenberg, B., VanCamp, L., Trosko, J. E. \& Mansour, V. H. (1969). Nature (London), 222, 385-386.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Cristal Structures. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46. C- 34.
Textor, M., Dubler, E. \& Oswald. H. R. (1974). Inorg. Chem. 13. 1361-1365.
Zhu, F.-C., Schmalle, H. W.. Fischer, B. \& Dubler. E. (1998). Inorg. Chem. 37, 1161-1168.

Acta Cryst. (1998). C54, 776-779

Aquabis(3-methyl-4-octanoyl-1-phenyl-5-pyrazolonato- O, O^{\prime})zinc(II) and Bis(ethanol-O)bis(3-methyl-1-phenyl-4-stearoyl-5-pyrazolonato-O,O') cadmium(II)

Wulfhard Mickler, Annett Reich, Stefan Sawusch, Uwe Schlde and Erhard Uhlemann
Universität Potsdam, Institut für Anorganische Chemie und Didaktik der Chemie, Postfach 601553, Am Neuen Palais 10 , D-I4415 Potsdam, Germany. E-mail: us@conrad.chem.unipotsdam.de

(Received 17 June 1997; accepted 11 December 1997)

Abstract

The structures of the zinc and cadmium complexes of 4-acyl-3-methyl-1-phenyl-5-pyrazolones, [Zn $\left.\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ and $\left[\mathrm{Cd}\left(\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6}-\right.\right.$ $\mathrm{O})_{2}$], show remarkable differences. In the case of zinc, the coordination number is five and a square-pyramidal structure was found, which is realized by the coordination of one molecule of water in the apical position. The coordination polyhedron is significantly distorted towards a trigonal-bipyramidal arrangement. The cadmium compound contains two coordinated ethanol molecules and is octahedral.

Comment

4-Acyl-3-methyl-1-phenyl-5-pyrazolones are useful agents for the extraction of metals (Jensen, 1959a,b; Zolotov \& Kuzmin, 1977).

© 1998 International Union of Crystallography Printed in Great Britain - all rights reserved

Long-chain 4-acyl-3-methyl-1-phenyl-5-pyrazolones can be used likewise as carriers in the liquid membrane permeation of copper (Mickler et al., 1991; Kümmel et al., 1996), as well as in the competing permeation of nickel, zinc and cadmium (Mickler et al., 1996). In this case, zinc is selected before cadmium and nickel, even though the stability constants of complexes with 4-acyl-5-pyrazolones show the reverse sequence (Friedrich et al., 1989). In order to clarify any influences of structural parameters on this behaviour, the molecular structures of the zinc and cadmium complexes with long-chain 4-acyl-3-methyl-1-phenyl-5-pyrazolones, i.e. (1) and (2), respectively, were determined.

(2)

In the zinc complex, (1), the central atom displays square-pyramidal coordination, strongly distorted towards trigonal-bipyramidal coordination (Fig. 1). Characteristic of the distortion are the angles about the Zn atom: 161.1 (2) ($\mathrm{O} 11-\mathrm{Zn}-\mathrm{O} 21$), 152.2 (2) ($\mathrm{O} 12-$ $\mathrm{Zn}-\mathrm{O} 22$), $104.3(2)(\mathrm{O} 12-\mathrm{Zn}-\mathrm{O} 3)$ and $103.5(2)^{\circ}$ ($\mathrm{O} 22-\mathrm{Zn}-\mathrm{O} 3$). The $\mathrm{Zn}-\mathrm{O}$ bond lengths were found to range from 1.970 (3) to 2.061 (4) \AA. The $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ bond lengths within the chelate rings are nearly equal, indicating delocalized π electrons. Both chelate rings are folded about the O donor atoms, by angles of $20.5(3)$ and $17.6(3)^{\circ}$. The planes formed by the chelate and pyrazolone rings are nearly parallel to each other. The double bonds $\mathrm{N} 12=\mathrm{C} 14[1.312(6) \AA$ i $]$ and $\mathrm{N} 22=\mathrm{C} 24$ [1.312 (6) \AA] are characteristic of the pyrazolone ring. The planes of the phenyl rings are slightly twisted with respect to the pyrazolone planes [charac-
terized by torsion angles of $-3.7(8)$ and $\left.-14.7(8)^{\circ}\right]$. The complex shows pseudo-twofold symmetry, with the Zn and O 3 atoms positioned on the non-crystallographic twofold axis. Intermolecular hydrogen bonds were found between atoms O 3 and N 12 via H 10 , as well as between atoms O 3 and N 22 via H20. Thus, each molecule is linked to two others, forming infinite chains. The H10 $\cdots \mathrm{N} 12$ bonds are located nearly parallel to \mathbf{b}, but the $\mathrm{H} 20 \cdots \mathrm{~N} 22$ bonds are oriented parallel to the $a b$ plane. The molecule itself lies somewhere between being parallel to the [101] plane and parallel to the [111] plane. The structure is closely related to that of aquabis(acetylacetonato)zinc (Lippert \& Truter, 1960), which was also described as trigonal bypyramidal, whereas bis(benzoylacetonato)(ethanol)zinc (Belford et al., 1969) was observed to be more square pyramidal. However, any similar zinc chelates including the pyrazolone moiety are not known.

Fig. 1. The molecular structure of (1) showing 50% probability displacement ellipsoids and H atoms as spheres of arbitrary radii.

The cadmium complex, (2), has an octahedral coordination polyhedron (Fig. 2). Besides two pyrazolone ligands, the Cd atom binds two molecules of ethanol. An analogous structure was found for bis(ethanol)bis-(4-benzoyl-3-methyl-1-phenyl-5-pyrazolonato)calcium
(Uhlemann et al., 1995). The central CdO_{4} ring is perfectly planar as a result of the fact that the Cd atom lies on a crystallographic inversion centre. The CdO bond lengths are 2.193 (3) and 2.268 (3) \AA. There is a somewhat greater distance [2.332(4) A] to the oxygen donors of the coordinated solvent molecules. The angles between the best planes are similar to those in the zinc complex. Again, while the chelate and pyrazolone rings are nearly coplanar, the value of the angle describing the fold of the chelate ring about the donor O atoms is 2.8 (2) $)^{\circ}$. The torsion angle between the phenyl and heterocyclic ring planes is $-7.5(5)^{\circ}$. Intermolecular hydrogen bonds were found between atoms O 3 and N 2 , forming chains parallel to the a axis. While some cadmium reference compounds with the β-diketone structural element are well known, e.g. bis(acetylaceton-ato)(1,10-phenanthroline)cadmium (Bustos et al., 1983), examples with the pyrazolone fragment have not been reported.

Fig. 2. The molecular structure of (2) showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Experimental

The title compounds were synthesized by adding ethanolic solutions of $\mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} .2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$.$2 \mathrm{H}_{2} \mathrm{O}$, respectively, to stirred warm solutions of 3-methyl-4-octanoyl-1-phenyl-5-pyrazolone and 3-methyl-1-phenyl-4-stearoyl-5-pyrazolone (Mickler \& Uhlemann, 1993) in ethanol. The products were recrystallized from ethanol. In the case of
the cadmium complex, only some long needles were suitable for analysis. Attempts to cut them without damage were unsuccessful.

Compound (1)

Crystal data
$\left[\mathrm{Zn}\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=682.15$
Triclinic
$P \overline{1}$
$a=10.181(5) \AA$
$b=13.047$ (7) \AA
$c=14.751(7) \AA$
$\alpha=101.60(3)^{\circ}$
$\beta=101.90(4)^{\circ}$
$\gamma=99.86(5)^{\circ}$
$V=1831.3(16) \AA^{3}$
$Z=2$
$D_{x}=1.237 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe Stadi-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: none 4209 measured reflections 4209 independent reflections 2732 reflections with
$I>2 \sigma(I)$
$\theta_{\text {max }}=21.7^{\circ}$
$h=-10 \rightarrow 10$
$k=-13 \rightarrow 13$
$l=0 \rightarrow 15$
2 standard reflections frequency: 120 min intensity decay: none

Refinement

Refinement on F^{2}
$R(F)=0.051$
$w R\left(F^{2}\right)=0.117$
$S=1.054$
4209 reflections 421 parameters H atoms: see below

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0737 P)^{2}\right]
$$

where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (1)

Zn -022	1.970 (3)	N11-C16	1.430 (6)
$\mathrm{Zn}-\mathrm{O} 22$	1.979 (4)	N12-C14	1.312 (6)
$\mathrm{Zn}-03$	2.001 (4)	N21-C23	1.366 (6)
$\mathrm{Zn}-\mathrm{O} 21$	2.029 (4)	N21-N22	1.407 (6)
$\mathrm{Zn}-\mathrm{Oll}$	2.061 (4)	N21-C26	1.418 (7)
$\mathrm{N} 11-\mathrm{Cl} 3$	1.373 (6)	N22-C24	1.312 (6)
$\mathrm{N} 11-\mathrm{N} 12$	1.400 (6)		
$\mathrm{O} 22-\mathrm{Zn}-\mathrm{O} 12$	152.2 (2)	$\mathrm{Cl3}-\mathrm{N} 11-\mathrm{N} 12$	110.8 (4)
$\mathrm{O} 22-\mathrm{Zn}-\mathrm{O} 3$	103.5 (2)	$\mathrm{Cl} 4-\mathrm{N} 12-\mathrm{NII}$	106.3 (4)
$\mathrm{O} 2-\mathrm{Zn}-\mathrm{O} 3$	104.3 (2)	$\mathrm{Cl1}-\mathrm{Ol1-} \mathrm{Zn}$	129.8 (3)
$\mathrm{O} 22-\mathrm{Zn}-\mathrm{O} 21$	89.68 (15)	$\mathrm{Cl} 3-\mathrm{Ol} 2-\mathrm{Zn}$	121.4 (3)
$\mathrm{O} 12-\mathrm{Zn}-\mathrm{O} 21$	85.7 (2)	$\mathrm{Ol1-Cll-C12}$	121.1 (5)
$\mathrm{O} 3-\mathrm{Zn}-\mathrm{O} 21$	98.6 (2)	C14-C12-C13	105.9 (4)
O22-Zn--OIl	87.86 (15)	$\mathrm{Cl} 3-\mathrm{Cl} 2-\mathrm{Cl1}$	121.7 (5)
$\mathrm{Ol2-Zn-O11}$	87.7 (2)	O12-C13-C12	$132.0(5)$
O3-Zn-OII	100.3 (2)	$\mathrm{NII-C13-C12}$	105.7 (4)
O21-Zn-O11	161.1 (2)	$\mathrm{N} 22-\mathrm{Cl} 4-\mathrm{Cl} 2$	111.3 (5)

Table 2. Hydrogen-bonding geometry $\left({ }_{A},{ }^{\circ}\right)$ for (1)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3—H10 $\cdots \mathrm{N} 12^{\prime}$	$0.92(4)$	$1.87(4)$	$2.760(6)$	$162(5)$
$\mathrm{O} 3-\mathrm{H} 20 \cdots \mathrm{~N} 22^{\prime \prime}$	$0.92(4)$	$1.85(4)$	$2.742(6)$	$162(5)$

Symmetry codes: (i) $1-x, 1-y, 1-z ;$ (ii) $-x,-y, 1-z$.
$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\text {max }}=0.320 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.427 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for
Crystallography (Vol. C)

Compound (2)

Crystal data
$\left[\mathrm{Cd}\left(\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)_{2}\right]$
$M_{r}=1083.82$
Triclinic
$P \overline{1}$
$a=8.817$ (6) \AA
$b=9.361$ (7) \AA
$c=19.06$ (2) \AA
$\alpha=101.48(7)^{\circ}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 56 reflections
$\theta=12.5-15.0^{\circ}$
$\mu=0.416 \mathrm{~mm}^{-1}$
$T=210$ (2) K
Needle
$\beta=99.58(9)^{\circ}$
$\gamma=99.10(9)^{\circ}$
$V=1490(2) \AA^{3}$
$Z=1$
$D_{x}=1.208 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe Stadi-4 diffractometer $\omega / 2 \theta$ scans
$\theta_{\text {max }}=25^{\circ}$
$h=-7 \rightarrow 7$
Absorption correction: none
7182 measured reflections
$k=-8 \rightarrow 8$
$l=-15 \rightarrow 15$
3581 independent reflections
3262 reflections with
$I>2 \sigma(I)$
$R_{\text {tnt }}=0.081$
2 standard reflections frequency: 120 min intensity decay: none

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\text {max }}=0.009$
$R(F)=0.042$
$w R\left(F^{2}\right)=0.096$
$S=0.983$
3577 reflections
328 parameters
H atoms: see below
$\Delta \rho_{\max }=0.490 \mathrm{e}^{\AA^{-3}}{ }^{-3}$
$\Delta \rho_{\min }=-1.014 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crustallography (Vol. C)
$1.61 \times 0.15 \times 0.15 \mathrm{~mm}$
Colourless
$n=1 /\left[\sigma^{2}\left(F_{a}^{2}\right)+(0.0584 P)^{2}\right.$
$+0.5226 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Table 3. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (2)

$\mathrm{Cd}-\mathrm{O} 2$	$2.193(3)$	$\mathrm{N} 2-\mathrm{C} 4$	$1.319(4)$
$\mathrm{Cd}-\mathrm{O} 1$	$2.268(3)$	$\mathrm{O} 1-\mathrm{Cl}$	$1.246(4)$
$\mathrm{Cd}-\mathrm{O} 3$	$2.332(4)$	$\mathrm{O} 2-\mathrm{C} 3$	$1.274(4)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.382(4)$	$\mathrm{Cl}-\mathrm{C} 2$	$1.445(4)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.390(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.414(5)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.423(4)$	$\mathrm{C} 2-\mathrm{C} 4$	$1.438(5)$
$\mathrm{O} 21-\mathrm{Cd}-\mathrm{O} 1^{\prime}$	$82.70(10)$	$\mathrm{Cl}-\mathrm{Ol}-\mathrm{Cd}$	$13.3 .2(2)$
$\mathrm{O} 2-\mathrm{Cd}-\mathrm{O} 1^{\prime}$	$97.30(10)$	$\mathrm{C} 3-\mathrm{O} 2-\mathrm{Cd}$	$125.0(2)$
$\mathrm{O} 2-\mathrm{Cd}-\mathrm{O} 3$	$87.35(12)$	$\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 2$	$121.4(3)$
$\mathrm{O} 2-\mathrm{Cd}-\mathrm{O} 3$	$92.65(12)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 4$	$104.9(3)$
$\mathrm{O} 1^{1}-\mathrm{Cd}-\mathrm{O} 3$	$89.15(1.3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl}$	$124.6(3)$
$\mathrm{O} 1-\mathrm{Cd}-\mathrm{O} 3$	$90.85(13)$	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	$132.9(3)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{N} 2$	$110.9(3)$	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$106.3(3)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{NI}$	$106.7(3)$	$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 2$	$111.2(3)$

Symmetry code: (i) $1-x, 1-y, 1-2$.

Table 4. Hydrogen-bonding geometry $\left({ }_{A},^{\circ}\right)$ for (2)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$0.3-\mathrm{H} 10 \cdots \mathrm{~N} 2$				

Symmetry code: (i) $x-1, y, z$.

The crystals of the zinc compound were of poor quality and so reflections could only been monitored up to $\theta=$ 21.7°. The structures were solved by direct methods and successive difference Fourier syntheses. All of the phenyl and alkyl H atoms were calculated and refined as riding atoms. The hydroxy H atom (H10) of the cadmium complex was located from the difference map and refined freely. In the zinc compound, only the positions, not the U 's, of the water H atoms were refined, to produce better bond lengths. All non-H atoms were refined with anisotropic displacement parameters, with the exception of the disordered atoms C29A/B and C30A/B of the solvent molecule in the cadmium complex. These atoms were refined isotropically using split positions (0.5 occupancy factor for each). Bond-length restraints were employed for the C29A/B-C30A/B bonds, as well as for the O3-C29A/B bonds. The greatest hole ($-1.01 \mathrm{e}_{\AA^{-3}}$) in the difference electron-density map was found to be near the Cd atom (distance $1.13 \AA$).
For both compounds, data collection: STADI4 (Stoe \& Cie, 1995a); cell refinement: STADI4; data reduction: X-RED (Stoe \& Cie, 1995b); program(s) used to solve structures: SHELXS86 (Sheldrick, 1990); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPII (Johnson, 1970).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1020). Services for accessing these data are described at the back of the journal.

References

Belford, R. L., Chasteen, N. D., Hitchman, M. A., Hon, P.-K., Pfluger, C. E. \& Paul, I. C. (1969). Inorg. Chem. 8, 1312-1319.

Bustos, L., Green. J. H.. Hencher, J. L., Khan. M. A. \& Tuck. D. G. (1983). Can. J. Chem. 61, 2141-2146.

Friedrich, A., Hinsche, G. \& Uhlemann, E. (1989). Z. Anorg. Allg. Chem. 577, 102-110.
Jensen. B. S. (1959a). Acta Chem. Scand. 13, 1668-1670.
Jensen, B. S. (1959b). Acta Chem. Scand. 13. 1890-1896.
Johnson, C. K. (1970). ORTEPII. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.
Kümmel. W.. Schröder, M., Uhlemann. E. \& Mickler, W. (1996). Chem. Technik. 48, 197-202.
Lippert. E. L. \& Truter, M. R. (1960). J. Chem. Soc. pp. 4996-5006.
Mickler. W.. Reich. A.. Uhlemann. E. \& Bart. H. J. (1996). J. Membr. Sci. 119. 91-97.
Mickler, W. \& Uhlemann, E. (1993). Sep. Sci. Technol. 28, 19131921.

Mickler. W., Uhlemann. E., Schröder, M. \& Kümmel. R. (1991). Anal. Chim. Acta. 245, 243-249.
Sheldrick. G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick. G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen. Germany.
Stoe \& Cie (1995a). STADI4. Diffractometer Control Program. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cic (1995b). X-RED. Data Reduction Program. Stoe \& Cie, Darmstadt, Germany.
Uhlemann. E., Schilde, U. \& Weller. F. (1995). Z. Naturforsch. Teil $B, 50,31-36$.
Zolotov, Yu. A. \& Kuzmin. N. M. (1977). In Ekstrakisiva Metallov Atsilpirazolami. Izdatelstvo Nauka. Moskva. USSR.

